skip to main content


Search for: All records

Creators/Authors contains: "Nikutta, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We announce the second data release (DR2) of the NOIRLab Source Catalog (NSC), using 412,116 public images from CTIO-4 m+DECam, the KPNO-4 m+Mosaic3, and the Bok-2.3 m+90Prime. NSC DR2 contains over 3.9 billion unique objects, 68 billion individual source measurements, covers ≈35,000 square degrees of the sky, has depths of ≈23 mag in most broadband filters with ≈1%–2% photometric precision, and astrometric accuracy of ≈7 mas. Approximately 1.9 billion objects within ≈30,000 square degrees of sky have photometry in three or more bands. There are several improvements over NSC DR1. DR2 includes 156,662 (61%) more exposures extending over 2 more years than in DR1. The southern photometric zero-points in griz are more accurate by using the Skymapper DR1 and ATLAS-Ref2 catalogs, and improved extinction corrections were used for high-extinction regions. In addition, the astrometric accuracy is improved by taking advantage of Gaia DR2 proper motions when calibrating the astrometry of individual images. This improves the NSC proper motions to ∼2.5 mas yr −1 (precision) and ∼0.2 mas yr −1 (accuracy). The combination of sources into unique objects is performed using a DBSCAN algorithm and mean parameters per object (such as mean magnitudes, proper motion, etc.) are calculated more robustly with outlier rejection. Finally, eight multi-band photometric variability indices are calculated for each object and variable objects are flagged (23 million objects). NSC DR2 will be useful for exploring solar system objects, stellar streams, dwarf satellite galaxies, quasi-stellar objects, variable stars, high proper-motion stars, and transients. Several examples of these science use cases are presented. The NSC DR2 catalog is publicly available via the NOIRLab’s Astro Data Lab science platform. 
    more » « less
  2. null (Ed.)
    The size and structure of the dusty circumnuclear torus in active galactic nuclei (AGNs) can be investigated by analyzing the temporal response of the torus's infrared (IR) dust emission to variations in the AGN ultraviolet/optical luminosity. This method, reverberation mapping, is applicable over a wide redshift range, but the IR response is sensitive to several poorly constrained variables relating to the dust distribution and its illumination, complicating the interpretation of measured reverberation lags. We have used an enhanced version of our torus reverberation mapping code (TORMAC) to conduct a comprehensive exploration of the torus response functions at selected wavelengths, for the standard interstellar medium grain composition. The shapes of the response functions vary widely over the parameter range covered by our models, with the largest variations occurring at shorter wavelengths (≤4.5 μm). The reverberation lag, quantified as the response-weighted delay (RWD), is most affected by the radial depth of the torus, the steepness of the radial cloud distribution, the degree of anisotropy of the AGN radiation field, and the volume filling factor. Nevertheless, we find that the RWD provides a reasonably robust estimate, to within a factor of ~3, of the luminosity-weighted torus radius, confirming the basic assumption underlying reverberation mapping. However, overall, the models predict radii at 2.2 μm that are typically a factor of ~2 larger than those derived from K-band reverberation mapping. This is likely an indication that the innermost region of the torus is populated by clouds dominated by large graphite grains. 
    more » « less